JEE MAIN - Physics (2024 - 6th April Morning Shift - No. 23)
Explanation
For a particle performing simple harmonic motion (SHM), the maximum velocity $$v_{max}$$ can be calculated using the formula:
$v_{max} = A\omega$
where $A$ is the amplitude of the motion and $\omega$ is the angular frequency. The angular frequency $\omega$ is related to the time period $T$ by the formula:
$\omega = \frac{2\pi}{T}$
Given:
- Amplitude, $A = 0.06 \, \mathrm{m}$
- Time period, $T = 3.14 \, \mathrm{s}$
First, we find the angular frequency:
$\omega = \frac{2\pi}{T} = \frac{2\pi}{3.14}$
Substituting $\omega$ and $A$ in the formula for $v_{max}$:
$v_{max} = A\omega = 0.06 \times \frac{2\pi}{3.14}$
$v_{max} = 0.06 \times \frac{2 \times 3.14}{3.14}$
$v_{max} = 0.06 \times 2$
$v_{max} = 0.12 \, \mathrm{m/s}$
To convert meters per second to centimeters per second, we use the conversion factor $1 \, \mathrm{m/s} = 100 \, \mathrm{cm/s}$. Therefore,
$v_{max} = 0.12 \, \mathrm{m/s} \times 100 \, \mathrm{cm/m} = 12 \, \mathrm{cm/s}$
Thus, the maximum velocity of the particle is $12 \, \mathrm{cm/s}$.
Comments (0)
