JEE MAIN - Physics (2024 - 6th April Evening Shift - No. 21)
Explanation
To solve this problem, we need to use the concept of resonance in an LCR (inductor-capacitor-resistor) circuit. At resonance, the inductive reactance and capacitive reactance cancel each other out. The condition for resonance in an LCR circuit is given by:
$$\omega L = \frac{1}{\omega C}$$
Where:
- $$\omega$$ is the angular frequency
- $$L$$ is the inductance
- $$C$$ is the capacitance
Rewriting for angular frequency:
$$\omega^2 = \frac{1}{LC}$$
The angular frequency $$\omega$$ is related to the frequency $ f $ by:
$$\omega = 2 \pi f$$
Substituting this into the equation for angular frequency gives:
$$ (2 \pi f)^2 = \frac{1}{LC} $$
Therefore, the frequency $ f $ can be found by:
$$ f = \frac{1}{2 \pi \sqrt{LC}} $$
Given values:
- Inductance, $$L = 100 \mathrm{~mH} = 100 \times 10^{-3} \mathrm{~H}$$
- Capacitance, $$C = 2.5 \mathrm{~nF} = 2.5 \times 10^{-9} \mathrm{~F}$$
Plug these values into the frequency equation:
$$ f = \frac{1}{2 \pi \sqrt{(100 \times 10^{-3}) (2.5 \times 10^{-9})}} $$
First, calculate the product of $ L $ and $ C $:
$$ L \cdot C = 100 \times 10^{-3} \cdot 2.5 \times 10^{-9} = 2.5 \times 10^{-10} $$
Now, take the square root of the product:
$$ \sqrt{2.5 \times 10^{-10}} = \sqrt{2.5} \times 10^{-5} $$
Given that $$ \mathrm{a}^2 = 10 $$, we have:
$$ \mathrm{a} = \sqrt{10} $$
Since $ \sqrt{2.5} = \frac{\sqrt{10}}{2} $:
$$ \sqrt{2.5} \times 10^{-5} = \frac{\sqrt{10}}{2} \times 10^{-5} $$
Now substitute back into the frequency formula:
$$ f = \frac{1}{2 \pi \left( \frac{\sqrt{10}}{2} \times 10^{-5} \right) } = \frac{1}{\pi \sqrt{10} \times 10^{-5}} $$
Simplify the equation:
$$ f = \frac{10^5}{\pi \sqrt{10}} $$
Given that $$ \pi \approx 3.14 $$, we get:
$$ f \approx \frac{10^5}{3.14 \times 3.162} $$
Simplify further:
$$ f \approx \frac{10^5}{9.93} \approx 10 \times 10^3 \mathrm{~Hz} $$
Thus, the frequency of the AC source is approximately:
$$ 10 \times 10^3 \mathrm{~Hz} $$
Comments (0)
