JEE MAIN - Physics (2024 - 5th April Morning Shift - No. 4)

Ratio of radius of gyration of a hollow sphere to that of a solid cylinder of equal mass, for moment of Inertia about their diameter axis $$A B$$ as shown in figure is $$\sqrt{8 / x}$$. The value of $$x$$ is :

JEE Main 2024 (Online) 5th April Morning Shift Physics - Rotational Motion Question 15 English

34
51
67
17

Explanation

For hollow sphere

$$\begin{aligned} & I_1=\frac{2}{3} m R^2=\left(\sqrt{\frac{2}{3}} R\right)^2 m \\ & \therefore \quad K_1=\sqrt{\frac{2}{3}} R \end{aligned}$$

For solid cylinder

$$\begin{aligned} & I_2=\frac{1}{4} m R^2+\frac{m}{3}(4 R)^2 \\ & =\left(\sqrt{\frac{67}{12}} R\right)^2 m \\ & \therefore \quad K_2=\sqrt{\frac{67}{12}} R \\ & \Rightarrow \frac{K_1}{K_2}=\sqrt{\frac{2}{3} \times \frac{12}{67}} \\ & =\sqrt{\frac{8}{67}} \end{aligned}$$

$$\Rightarrow \quad x=67$$

Comments (0)

Advertisement