JEE MAIN - Physics (2024 - 4th April Evening Shift - No. 5)

A sample of gas at temperature $$T$$ is adiabatically expanded to double its volume. Adiabatic constant for the gas is $$\gamma=3 / 2$$. The work done by the gas in the process is:

$$(\mu=1 \text { mole })$$

$$R T[2 \sqrt{2}-1]$$
$$R T[2-\sqrt{2}]$$
$$R T[1-2 \sqrt{2}]$$
$$R T[\sqrt{2}-2]$$

Explanation

$$\begin{aligned} & w=\frac{-n R}{\gamma-1}(\Delta T) \\ &=\frac{-R}{1 / 2}\left(\frac{T}{\sqrt{2}}-T\right) \\ &=2 R\left(\frac{\sqrt{2} T-T}{\sqrt{2}}\right) \\ &=R T(2-\sqrt{2}) \\ & \therefore \quad T V_\gamma^{-1}=\text { cons. } \\ & T V_\gamma^{-1}=T_f(2 V)^{\gamma-1} \\ & T_f=\frac{T}{\sqrt{2}} \end{aligned}$$

Comments (0)

Advertisement