JEE MAIN - Physics (2024 - 31st January Morning Shift - No. 3)
The given figure represents two isobaric processes for the same mass of an ideal gas, then
_31st_January_Morning_Shift_en_3_1.png)
Explanation
The two isobaric processes depicted in the figure show changes in the volume of an ideal gas with temperature under constant pressure conditions.
Isobaric processes follow the equation $$PV = nRT$$, where P is pressure, V is volume, n is the number of moles of the gas, R is the ideal gas constant, and T is temperature.
When we rearrange the equation in terms of V (Volume), we get $$V = \left(\frac{nR}{P}\right)T$$. The slope of the volume-temperature graph in such a scenario is given by $$\frac{nR}{P}$$. This implies that the slope is inversely proportional to the pressure (i.e., slope $$\propto \frac{1}{P}$$).
From this relationship, if one process has a higher slope compared to another, its corresponding pressure must be lower. Observing the given figure and applying this understanding, if Process 2 has a greater slope than Process 1, it indicates that $$P_2 < P_1$$.
Comments (0)


