JEE MAIN - Physics (2024 - 31st January Morning Shift - No. 17)
A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?
_31st_January_Morning_Shift_en_17_1.png)
_31st_January_Morning_Shift_en_17_2.png)
_31st_January_Morning_Shift_en_17_3.png)
_31st_January_Morning_Shift_en_17_4.png)
Explanation
$$\begin{aligned} & \mathrm{mg}-\mathrm{F}_{\mathrm{B}}-\mathrm{F}_{\mathrm{v}}=\mathrm{ma} \\ & \left(\rho \frac{4}{3} \pi \mathrm{r}^3\right) g-\left(\rho_{\mathrm{L}} \frac{4}{3} \pi \mathrm{r}^3\right) g-6 \pi \eta r v=m \frac{d v}{d t} \end{aligned}$$
Let $$\frac{4}{3 m} \pi R^3 g\left(\rho-\rho_L\right)=K_1$$ and $$\frac{6 \pi \eta r}{m}=K_2$$
$$\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{K}_1-\mathrm{K}_2 \mathrm{~V}$$
$$\begin{aligned} & \int_\limits0^v \frac{d v}{K_1-K_2 v}=\int_\limits0^t d t \\ & -\frac{1}{K_2} \ln \left[K_1-K_2 v\right]_0^v=t \\ & \ell n\left(\frac{K_1-K_2 v}{K_1}\right)=-K_2 t \\ & K_1-K_2 v=K_1 e^{-K_2 t} \\ & v=\frac{K_1}{K_2}\left[1-e^{-K_2 t}\right] \end{aligned}$$
Comments (0)
