JEE MAIN - Physics (2024 - 31st January Morning Shift - No. 15)

Two conductors have the same resistances at $$0^{\circ} \mathrm{C}$$ but their temperature coefficients of resistance are $$\alpha_1$$ and $$\alpha_2$$. The respective temperature coefficients for their series and parallel combinations are :
$$\alpha_1+\alpha_2, \frac{\alpha_1 \alpha_2}{\alpha_1+\alpha_2}$$
$$\frac{\alpha_1+\alpha_2}{2}, \frac{\alpha_1+\alpha_2}{2}$$
$$\alpha_1+\alpha_2, \frac{\alpha_1+\alpha_2}{2}$$
$$\frac{\alpha_1+\alpha_2}{2}, \alpha_1+\alpha_2$$

Explanation

Series :

$$\begin{aligned} & \mathrm{R}_{\mathrm{eq}}=\mathrm{R}_1+\mathrm{R}_2 \\ & 2 \mathrm{R}\left(1+\alpha_{\mathrm{eq}} \Delta \theta\right)=\mathrm{R}\left(1+\alpha_1 \Delta \theta\right)+\mathrm{R}\left(1+\alpha_2 \Delta \theta\right) \\ & 2 \mathrm{R}\left(1+\alpha_{\mathrm{eq}} \Delta \theta\right)=2 \mathrm{R}+\left(\alpha_1+\alpha_2\right) \mathrm{R} \Delta \theta \\ & \alpha_{\mathrm{eq}}=\frac{\alpha_1+\alpha_2}{2} \end{aligned}$$

Parallel :

$$\begin{aligned} & \frac{1}{R_{\text {eq }}}=\frac{1}{R_1}+\frac{1}{R_2} \\ & \frac{1}{\frac{R}{2}\left(1+\alpha_{\text {eq }} \Delta \theta\right)}=\frac{1}{R\left(1+\alpha_1 \Delta \theta\right)}+\frac{1}{\mathrm{R}\left(1+\alpha_2 \Delta \theta\right)} \end{aligned}$$

$$\begin{aligned} & \frac{2}{1+\alpha_{\mathrm{eq}} \Delta \theta}=\frac{1}{1+\alpha_1 \Delta \theta}+\frac{1}{1+\alpha_2 \Delta \theta} \\ & \frac{2}{1+\alpha_{\mathrm{eq}} \Delta \theta}=\frac{1+\alpha_2 \Delta \theta+1+\alpha_1 \Delta \theta}{\left(1+\alpha_1 \Delta \theta\right)\left(1+\alpha_2 \Delta \theta\right)} \\ & 2\left[\left(1+\alpha_1 \Delta \theta\right)\left(1+\alpha_2 \Delta \theta\right)\right] \\ & =\left[2+\left(\alpha_1+\alpha_2\right) \Delta \theta\right]\left[1+\alpha_{\mathrm{eq}} \Delta \theta\right] \\ & 2\left[1+\alpha_1 \Delta \theta+\alpha_2 \Delta \theta+\alpha_1 \alpha_2 \Delta \theta\right] \end{aligned}$$

$$\begin{aligned} & = \\ & 2+2 \alpha_{\mathrm{eq}} \Delta \theta+\left(\alpha_1+\alpha_2\right) \Delta \theta+\alpha_{\mathrm{eq}}\left(\alpha_1+\alpha_2\right) \Delta \theta^2 \end{aligned}$$

Neglecting small terms

$$\begin{aligned} & 2+2\left(\alpha_1+\alpha_2\right) \Delta \theta=2+2 \alpha_{\mathrm{eq}} \Delta \theta+\left(\alpha_1+\alpha_2\right) \Delta \theta \\ & \left(\alpha_1+\alpha_2\right) \Delta \theta=2 \alpha_{\mathrm{eq}} \Delta \theta \\ & \alpha_{\mathrm{eq}}=\frac{\alpha_1+\alpha_2}{2} \end{aligned}$$

Comments (0)

Advertisement