JEE MAIN - Physics (2024 - 29th January Morning Shift - No. 13)

If the radius of curvature of the path of two particles of same mass are in the ratio $$3: 4$$, then in order to have constant centripetal force, their velocities will be in the ratio of :
$$1: \sqrt{3}$$
$$2: \sqrt{3}$$
$$\sqrt{3}: 2$$
$$\sqrt{3}: 1$$

Explanation

Given $$\mathrm{m}_1=\mathrm{m}_2$$

$$\text { and } \frac{r_1}{r_2}=\frac{3}{4}$$

As centripetal force $$\mathrm{F}=\frac{\mathrm{mv}^2}{\mathrm{r}}$$

In order to have constant (same in this question) centripetal force

$$\begin{aligned} & \mathrm{F}_1=\mathrm{F}_2 \\ & \frac{\mathrm{m}_1 \mathrm{v}_1^2}{\mathrm{r}_1}=\frac{\mathrm{m}_2 \mathrm{v}_2^2}{\mathrm{r}_2} \\ & \Rightarrow \frac{\mathrm{v}_1}{\mathrm{v}_2}=\sqrt{\frac{\mathrm{r}_1}{\mathrm{r}_2}}=\frac{\sqrt{3}}{2} \end{aligned}$$

Comments (0)

Advertisement