JEE MAIN - Physics (2024 - 27th January Evening Shift - No. 2)

A ball suspended by a thread swings in a vertical plane so that its magnitude of acceleration in the extreme position and lowest position are equal. The angle $$(\theta)$$ of thread deflection in the extreme position will be :
$$\tan ^{-1}\left(\frac{1}{2}\right)$$
$$2 \tan ^{-1}\left(\frac{1}{2}\right)$$
$$2 \tan ^{-1}\left(\frac{1}{\sqrt{5}}\right)$$
$$\tan ^{-1}(\sqrt{2})$$

Explanation

JEE Main 2024 (Online) 27th January Evening Shift Physics - Work Power & Energy Question 28 English Explanation

Loss in kinetic energy $=$ Gain in potential energy

$$\begin{aligned} & \Rightarrow \frac{1}{2} \mathrm{mv}^2=\mathrm{mg} \ell(1-\cos \theta) \\ & \Rightarrow \frac{\mathrm{v}^2}{\ell}=2 \mathrm{~g}(1-\cos \theta) \end{aligned}$$

Acceleration at lowest point $$=\frac{\mathrm{v}^2}{\ell}$$

Acceleration at extreme point $$=g \sin \theta$$

$$\begin{aligned} & \text { Hence, } \frac{\mathrm{v}^2}{\ell}=\mathrm{g} \sin \theta \\ & \therefore \sin \theta=2(1-\cos \theta) \\ & \Rightarrow \tan \frac{\theta}{2}=\frac{1}{2} \Rightarrow \theta=2 \tan ^{-1}\left(\frac{1}{2}\right) \end{aligned}$$

Comments (0)

Advertisement