JEE MAIN - Physics (2023 - 8th April Evening Shift - No. 3)

For particle P revolving round the centre O with radius of circular path $$\mathrm{r}$$ and angular velocity $$\omega$$, as shown in below figure, the projection of OP on the $$x$$-axis at time $$t$$ is

JEE Main 2023 (Online) 8th April Evening Shift Physics - Simple Harmonic Motion Question 25 English

$$x(t)=\operatorname{cos}\left(\omega t-\frac{\pi}{6} \omega\right)$$
$$x(t)=\operatorname{cos}(\omega t)$$
$$x(t)=r \cos \left(\omega t+\frac{\pi}{6}\right)$$
$$x(t)=r \sin \left(\omega t+\frac{\pi}{6}\right)$$

Explanation

JEE Main 2023 (Online) 8th April Evening Shift Physics - Simple Harmonic Motion Question 25 English Explanation
After time $t$, the angular displacement will be

$\theta=\omega t$

Total angular displacement from $x$-axis.

$$ \theta_{\text {total }}=\omega t+\frac{\pi}{6} \quad\quad\left(\because 30^{\circ}=\frac{\pi}{6}\right) $$

Now, OP has two component

The horizontal component will be the projection along $x$-axis

$$ =r \cos \left(\theta_{\text {Total }}\right)=r \cos \left(\omega t+\frac{\pi}{6}\right) $$

Comments (0)

Advertisement