JEE MAIN - Physics (2023 - 30th January Morning Shift - No. 22)

The general displacement of a simple harmonic oscillator is $$x = A\sin \omega t$$. Let T be its time period. The slope of its potential energy (U) - time (t) curve will be maximum when $$t = {T \over \beta }$$. The value of $$\beta$$ is ______________.
Answer
8

Explanation

$$U = {1 \over 2}m{\omega ^2}{A^2}{\sin ^2}\omega t$$

So, $${{dU} \over {dt}} = {{m{\omega ^3}{A^2}} \over 2}\sin 2\omega t$$

This value will be maximum when $$\sin 2\omega t = 1$$

or $$2\omega t = {\pi \over 2}$$

$$2 \times {{2\pi } \over T}t = {\pi \over 2}$$

$$ \Rightarrow t = {T \over 8}$$

So $$\beta = 8$$

Comments (0)

Advertisement