JEE MAIN - Physics (2023 - 29th January Evening Shift - No. 9)

The time taken by an object to slide down 45$$^\circ$$ rough inclined plane is n times as it takes to slide down a perfectly smooth 45$$^\circ$$ incline plane. The coefficient of kinetic friction between the object and the incline plane is :
$$1 - {1 \over {{n^2}}}$$
$$1 + {1 \over {{n^2}}}$$
$$\sqrt {1 - {1 \over {{n^2}}}} $$
$$\sqrt {{1 \over {1 - {n^2}}}} $$

Explanation

JEE Main 2023 (Online) 29th January Evening Shift Physics - Laws of Motion Question 35 English Explanation

Smooth case:

$$a = g\sin 45^\circ = {9 \over {\sqrt 2 }}$$

$${t_1} = \sqrt {{{2L} \over a}} = \sqrt {{{2L} \over {g/\sqrt 2 }}} = \sqrt {{{2\sqrt 2 L} \over g}} $$ ..... (1)

Rough case:

$$a = g\sin 45^\circ - \mu g\cos 45^\circ $$

$$ = {g \over {\sqrt 2 }}(1 - \mu )$$

$${t_2} = \sqrt {{{2L} \over a}} = \sqrt {{{2\sqrt 2 L} \over {g(1 - \mu )}}} $$ ..... (2)

From (1) to (2) and $${t_1} = {{{t_2}} \over n}$$ we have

$$\sqrt {{{2\sqrt 2 L} \over g}} = {1 \over n}\sqrt {{{2\sqrt 2 L} \over {g(1 - \mu )}}} \Rightarrow \mu = 1 - {1 \over {{n^2}}}$$

Comments (0)

Advertisement