JEE MAIN - Physics (2023 - 25th January Evening Shift - No. 7)
Match List I with List II
List I | List II | ||
---|---|---|---|
A. | Gauss's Law in Electrostatics | I. | $$\oint {\overrightarrow E \,.\,d\overrightarrow l = - {{d{\phi _B}} \over {dt}}} $$ |
B. | Faraday's Law | II. | $$\oint {\overrightarrow B \,.\,d\overrightarrow A = 0} $$ |
C. | Gauss's Law in Magnetism | III. | $$\oint {\overrightarrow B \,.\,d\overrightarrow l = {\mu _0}{i_c} + {\mu _0}{ \in _0}{{d{\phi _E}} \over {dt}}} $$ |
D. | Ampere-Maxwell Law | IV. | $$\oint {\overrightarrow E \,.\,d\overrightarrow s = {q \over {{ \in _0}}}} $$ |
Choose the correct answer from the options given below :
A-I, B-II, C-III, D-IV
A-III, B-IV, C-I, D-II
A-IV, B-I, C-II, D-III
A-II, B-III, C-IV, D-I
Explanation
Gauss's law $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\epsilon_{0}} \quad(\mathrm{~A} \rightarrow \mathrm{IV})$
Faraday's law $\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{d \phi_{B}}{d t} \quad(\mathrm{~B} \rightarrow \mathrm{I})$
Gauss's law in magnetism $\oint \vec{B} \cdot \overrightarrow{d A}=0 \quad(\mathrm{C} \rightarrow \mathrm{II})$
Ampere's-Maxwell law $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}+\mu_{0} \in_{0} \frac{d \phi_{E}}{d t}$ $$ \text { (D } \rightarrow \text { III) } $$
Faraday's law $\oint \vec{E} \cdot \overrightarrow{d l}=-\frac{d \phi_{B}}{d t} \quad(\mathrm{~B} \rightarrow \mathrm{I})$
Gauss's law in magnetism $\oint \vec{B} \cdot \overrightarrow{d A}=0 \quad(\mathrm{C} \rightarrow \mathrm{II})$
Ampere's-Maxwell law $\oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i_{c}+\mu_{0} \in_{0} \frac{d \phi_{E}}{d t}$ $$ \text { (D } \rightarrow \text { III) } $$
Comments (0)
