JEE MAIN - Physics (2023 - 1st February Morning Shift - No. 7)
If earth has a mass nine times and radius twice to that of a planet P. Then $$\frac{v_{e}}{3} \sqrt{x} \mathrm{~ms}^{-1}$$ will be the minimum velocity required by a rocket to pull out of gravitational force of $$\mathrm{P}$$, where $$v_{e}$$ is escape velocity on earth. The value of $$x$$ is
1
3
2
18
Explanation
$$
\begin{aligned}
& M_E=9 M_P \\\\
& R_E=2 R_P
\end{aligned}
$$
Escape velocity $=\sqrt{\frac{2GM}{R}}$
For earth $v_e=\sqrt{\frac{2 G M_E}{R_E}}$
$$ \begin{aligned} & \text { For } P, v_e=\sqrt{\frac{\frac{2 G M_E}{9}}{\frac{R_E}{2}}}=\sqrt{\frac{2 G M_E}{R_E} \times \frac{2}{9}} \\\\ & =\frac{v_e \sqrt{2}}{3} \end{aligned} $$
Escape velocity $=\sqrt{\frac{2GM}{R}}$
For earth $v_e=\sqrt{\frac{2 G M_E}{R_E}}$
$$ \begin{aligned} & \text { For } P, v_e=\sqrt{\frac{\frac{2 G M_E}{9}}{\frac{R_E}{2}}}=\sqrt{\frac{2 G M_E}{R_E} \times \frac{2}{9}} \\\\ & =\frac{v_e \sqrt{2}}{3} \end{aligned} $$
Comments (0)
