JEE MAIN - Physics (2023 - 13th April Morning Shift - No. 28)
The elastic potential energy stored in a steel wire of length $$20 \mathrm{~m}$$ stretched through $$2 \mathrm{~cm}$$ is $$80 \mathrm{~J}$$. The cross sectional area of the wire is __________ $$\mathrm{mm}^{2}$$.
$$\left(\right.$$ Given, $$\left.y=2.0 \times 10^{11} \mathrm{Nm}^{-2}\right)$$
Answer
40
Explanation
Given, energy per unit volume = $$\frac{1}{2} \times \text{stress} \times \text{strain}$$
The stress can be given as $$\text{stress} = Y \times \text{strain}$$, where Y is the Young's modulus.
The energy stored in the wire can be written as:
$$\text{Energy} = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$
Substituting the stress formula, we get:
$$\text{Energy} = \frac{1}{2} \times Y \times \text{strain}^2 \times A \times L$$
We are given that the energy stored is $$80 \ \text{J}$$, the original length of the wire is $$20 \ \text{m}$$, the elongation is $$2 \ \text{cm}$$, and the Young's modulus is $$2.0 \times 10^{11} \ \text{Nm}^{-2}$$. We need to find the cross-sectional area (A) of the wire.
$$80 = \frac{1}{2} \times 2 \times 10^{11} \times \left(\frac{2 \times 10^{-2}}{20}\right)^2 \times A \times 20$$
Now we can solve for A:
$$A = \frac{80 \times 20^2}{(2.0 \times 10^{11}) \times (2 \times 10^{-2})^2} = 40 \times 10^{-6} \ \text{m}^2$$
To convert the area to $$\text{mm}^2$$, we multiply by $$10^6$$:
$$A = 40 \times 10^{-6} \times 10^6 = 40 \ \text{mm}^2$$
So, the cross-sectional area of the wire is $$40 \ \text{mm}^2$$.
The stress can be given as $$\text{stress} = Y \times \text{strain}$$, where Y is the Young's modulus.
The energy stored in the wire can be written as:
$$\text{Energy} = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume}$$
Substituting the stress formula, we get:
$$\text{Energy} = \frac{1}{2} \times Y \times \text{strain}^2 \times A \times L$$
We are given that the energy stored is $$80 \ \text{J}$$, the original length of the wire is $$20 \ \text{m}$$, the elongation is $$2 \ \text{cm}$$, and the Young's modulus is $$2.0 \times 10^{11} \ \text{Nm}^{-2}$$. We need to find the cross-sectional area (A) of the wire.
$$80 = \frac{1}{2} \times 2 \times 10^{11} \times \left(\frac{2 \times 10^{-2}}{20}\right)^2 \times A \times 20$$
Now we can solve for A:
$$A = \frac{80 \times 20^2}{(2.0 \times 10^{11}) \times (2 \times 10^{-2})^2} = 40 \times 10^{-6} \ \text{m}^2$$
To convert the area to $$\text{mm}^2$$, we multiply by $$10^6$$:
$$A = 40 \times 10^{-6} \times 10^6 = 40 \ \text{mm}^2$$
So, the cross-sectional area of the wire is $$40 \ \text{mm}^2$$.
Comments (0)
