JEE MAIN - Physics (2023 - 13th April Morning Shift - No. 24)

In the given figure, an inductor and a resistor are connected in series with a battery of emf E volt. $$\frac{E^{a}}{2 b} \mathrm{~J} / s$$ represents the maximum rate at which the energy is stored in the magnetic field (inductor). The numerical value of $$\frac{b}{a}$$ will be __________.

JEE Main 2023 (Online) 13th April Morning Shift Physics - Alternating Current Question 38 English

Answer
25

Explanation

$$ E=\frac{1}{2} L I^2 $$

Rate of energy storing $=\frac{d E}{d t}=L I \frac{d I}{d t}$

Now we Know for $R-L$ circuit

$$ I=\frac{E}{R}\left(1-e^{-t \frac{R}{L}}\right) $$

So $\frac{d I}{d t}=\frac{E}{L} e^{-\frac{t R}{L}}$

$$ \frac{d E}{d t}=\frac{E^2}{R}\left(1-e^{-\frac{t R}{L}}\right)\left(e^{-t \frac{R}{L}}\right) $$

Time at which rate of power storing will be $\max$

$$ \mathrm{t}=\frac{L}{R \ln 2} $$

So $\frac{d E}{d t}=\frac{E^2}{R}\left(1-\frac{1}{2}\right) \times \frac{1}{2}$

$$ \Rightarrow \frac{E^2}{4 R}=\frac{E^2}{100}=\frac{E^2}{2 \times 50} $$

$$ a=2, b=50 $$

So $\frac{b}{a}=25$

Comments (0)

Advertisement