JEE MAIN - Physics (2023 - 12th April Morning Shift - No. 12)

A wire of resistance $$160 ~\Omega$$ is melted and drawn in a wire of one-fourth of its length. The new resistance of the wire will be
$$640 ~\Omega$$
$$40 ~\Omega$$
$$16 ~\Omega$$
$$10 ~\Omega$$

Explanation

Let the original length of the wire be L and its cross-sectional area be A. Then, its resistance R is given by:

$$R = \frac{\rho L}{A}$$

where $$\rho$$ is the resistivity of the material of the wire.

When the wire is melted and drawn into a wire of one-fourth of its length, its new length is L/4 and its new cross-sectional area is 4A (since the same amount of material is now spread over a longer length). Therefore, its new resistance R' is given by:

$$R' = \frac{\rho (L/4)}{4A} = \frac{R}{16}$$

Substituting the given value of R, we get:

$$R' = \frac{160}{16} = 10 ~\Omega$$

Therefore, the new resistance of the wire is $$10 ~\Omega$$.

Comments (0)

Advertisement