JEE MAIN - Physics (2023 - 11th April Morning Shift - No. 4)
On a temperature scale '$$\mathrm{X}$$', the boiling point of water is $$65^{\circ} \mathrm{X}$$ and the freezing point is $$-15^{\circ} \mathrm{X}$$. Assume that the $$\mathrm{X}$$ scale is linear. The equivalent temperature corresponding to $$-95^{\circ} \mathrm{X}$$ on the Farenheit scale would be:
$$-148^{\circ} \mathrm{F}$$
$$-48^{\circ} \mathrm{F}$$
$$-63^{\circ} \mathrm{F}$$
$$-112^{\circ} \mathrm{F}$$
Explanation
We are given two temperature scales: the X-scale and the Celsius scale. The relationship between two linear temperature scales can be expressed as follows:
$$\frac{X - X_{\text{freeze}}}{X_{\text{boil}} - X_{\text{freeze}}} = \frac{C - C_{\text{freeze}}}{C_{\text{boil}} - C_{\text{freeze}}}$$
Here, $$X_{\text{freeze}}$$ and $$X_{\text{boil}}$$ are the freezing and boiling points of water on the X-scale, while $$C_{\text{freeze}}$$ and $$C_{\text{boil}}$$ are the freezing and boiling points of water on the Celsius scale.
We are given the following values:
X-scale:
$$X_{\text{boil}} = 65^{\circ} \mathrm{X}$$
$$X_{\text{freeze}} = -15^{\circ} \mathrm{X}$$
Celsius scale:
$$C_{\text{boil}} = 100^{\circ} \mathrm{C}$$
$$C_{\text{freeze}} = 0^{\circ} \mathrm{C}$$
Our goal is to find the equivalent temperature of $$-95^{\circ} \mathrm{X}$$ on the Fahrenheit scale.
Step 1: Convert $$-95^{\circ} \mathrm{X}$$ to Celsius:
Use the relationship between X-scale and Celsius scale:
$$\frac{-95 - (-15)}{65 - (-15)} = \frac{C - 0}{100 - 0}$$
Simplify and solve for C:
$$\frac{-80}{80} = \frac{C}{100}$$ $$C = -100^{\circ} \mathrm{C}$$
Step 2: Convert $$-100^{\circ} \mathrm{C}$$ to Fahrenheit:
Use the conversion formula between Celsius and Fahrenheit:
$$T_F = \frac{9}{5}T_C + 32$$
Substitute the Celsius temperature:
$$T_F = \frac{9}{5} \times (-100) + 32$$
$$T_F = -180 + 32$$
$$T_F = -148^{\circ} \mathrm{F}$$
So, the equivalent temperature corresponding to $$-95^{\circ} \mathrm{X}$$ on the Fahrenheit scale is $$-148^{\circ} \mathrm{F}$$.
$$\frac{X - X_{\text{freeze}}}{X_{\text{boil}} - X_{\text{freeze}}} = \frac{C - C_{\text{freeze}}}{C_{\text{boil}} - C_{\text{freeze}}}$$
Here, $$X_{\text{freeze}}$$ and $$X_{\text{boil}}$$ are the freezing and boiling points of water on the X-scale, while $$C_{\text{freeze}}$$ and $$C_{\text{boil}}$$ are the freezing and boiling points of water on the Celsius scale.
We are given the following values:
X-scale:
$$X_{\text{boil}} = 65^{\circ} \mathrm{X}$$
$$X_{\text{freeze}} = -15^{\circ} \mathrm{X}$$
Celsius scale:
$$C_{\text{boil}} = 100^{\circ} \mathrm{C}$$
$$C_{\text{freeze}} = 0^{\circ} \mathrm{C}$$
Our goal is to find the equivalent temperature of $$-95^{\circ} \mathrm{X}$$ on the Fahrenheit scale.
Step 1: Convert $$-95^{\circ} \mathrm{X}$$ to Celsius:
Use the relationship between X-scale and Celsius scale:
$$\frac{-95 - (-15)}{65 - (-15)} = \frac{C - 0}{100 - 0}$$
Simplify and solve for C:
$$\frac{-80}{80} = \frac{C}{100}$$ $$C = -100^{\circ} \mathrm{C}$$
Step 2: Convert $$-100^{\circ} \mathrm{C}$$ to Fahrenheit:
Use the conversion formula between Celsius and Fahrenheit:
$$T_F = \frac{9}{5}T_C + 32$$
Substitute the Celsius temperature:
$$T_F = \frac{9}{5} \times (-100) + 32$$
$$T_F = -180 + 32$$
$$T_F = -148^{\circ} \mathrm{F}$$
So, the equivalent temperature corresponding to $$-95^{\circ} \mathrm{X}$$ on the Fahrenheit scale is $$-148^{\circ} \mathrm{F}$$.
Comments (0)
