JEE MAIN - Physics (2023 - 11th April Morning Shift - No. 17)

JEE Main 2023 (Online) 11th April Morning Shift Physics - Alternating Current Question 35 English

As per the given graph, choose the correct representation for curve $$\mathrm{A}$$ and curve B.

Where $$\mathrm{X}_{\mathrm{C}}=$$ reactance of pure capacitive circuit connected with A.C. source

$$\mathrm{X}_{\mathrm{L}}=$$ reactance of pure inductive circuit connected with $$\mathrm{A} . \mathrm{C}$$. source

R = impedance of pure resistive circuit connected with A.C. source.

$$\mathrm{Z}=$$ Impedance of the LCR series circuit $$\}$$

$$\mathrm{A}=\mathrm{X}_{\mathrm{L}}, \mathrm{B}=\mathrm{R}$$
$$\mathrm{A}=\mathrm{X}_{L}, \mathrm{~B}=Z$$
$$\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{X}_{\mathrm{L}}$$
$$\mathrm{A}=\mathrm{X}_{\mathrm{C}}, \mathrm{B}=\mathrm{R}$$

Explanation

$$ \begin{aligned} & \mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{(2 \pi \mathrm{f}) \mathrm{C}} \\\\ & \therefore \mathrm{X}_{\mathrm{C}} \propto \frac{1}{\mathrm{f}} \\\\ & \therefore \text { Curve } \mathrm{A} \\\\ & \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=(2 \pi \mathrm{f}) \mathrm{L} \\\\ & \therefore \mathrm{X}_{\mathrm{L}} \propto \mathrm{f} \\\\ & \therefore \text { Curve } \mathrm{B} \end{aligned} $$

Comments (0)

Advertisement