JEE MAIN - Physics (2022 - 29th July Evening Shift - No. 24)

The metallic bob of simple pendulum has the relative density 5. The time period of this pendulum is $$10 \mathrm{~s}$$. If the metallic bob is immersed in water, then the new time period becomes $$5 \sqrt{x}$$ s. The value of $$x$$ will be ________.
Answer
5

Explanation

JEE Main 2022 (Online) 29th July Evening Shift Physics - Simple Harmonic Motion Question 46 English Explanation

$\mathrm{mg}^{\prime}=\mathrm{mg}-\mathrm{F}_{\mathrm{B}}$

$\mathrm{g}^{\prime}=\frac{\mathrm{mg}-\mathrm{F}_{\mathrm{B}}}{\mathrm{F}_{\mathrm{B}}}$

$=\frac{\rho_{\mathrm{B}} \mathrm{Vg}-\rho_{\mathrm{w}} \mathrm{Vg}}{\rho_{\mathrm{B}} \mathrm{V}}$

$=\left(\frac{\rho_{\mathrm{B}}-\rho_{\mathrm{w}}}{\rho_{\mathrm{B}}}\right) \mathrm{g}$

$=\frac{5-1}{5} \times \mathrm{g}$

$=\frac{4}{5} \mathrm{~g}$

We know, $T =2 \pi \sqrt{\frac{\ell}{\mathrm{g}}}$

$\frac{\mathrm{T}^{\prime}}{\mathrm{T}}=\sqrt{\frac{\mathrm{g}}{\mathrm{g}^{\prime}}}=\sqrt{\frac{\mathrm{g}}{5} \mathrm{~g}}=\sqrt{\frac{5}{4}}$

$\mathrm{~T}^{\prime}=\mathrm{T} \sqrt{\frac{5}{4}}=\frac{10}{2} \sqrt{5}$

$\mathrm{~T}^{\prime}=5 \sqrt{5}$

Comments (0)

Advertisement