JEE MAIN - Physics (2022 - 28th June Evening Shift - No. 15)

An EM wave propagating in x-direction has a wavelength of 8 mm. The electric field vibrating y-direction has maximum magnitude of 60 Vm$$-$$1. Choose the correct equations for electric and magnetic fields if the EM wave is propagating in vacuum :

$${E_y} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$

$${B_z} = 2\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$

$${E_y} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$

$${B_z} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$

$${E_y} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$

$${B_z} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$

$${E_y} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^4}(x - 4 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$

$${B_z} = 60\sin \left[ {{\pi \over 4} \times {{10}^4}(x - 4 \times {{10}^8}t)} \right]\widehat k\,\,T$$

Explanation

In first 3 options speed of light is 3 $$\times$$ 108 m/sec and in the fourth option it is 4 $$\times$$ 108 m/sec.

Using

E = CB

We can check the option is B.

Comments (0)

Advertisement