JEE MAIN - Physics (2022 - 28th June Evening Shift - No. 15)
$${E_y} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$
$${B_z} = 2\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$
$${E_y} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$
$${B_z} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$
$${E_y} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$
$${B_z} = 60\sin \left[ {{\pi \over 4} \times {{10}^3}(x - 3 \times {{10}^8}t)} \right]\widehat k\,\,T$$
$${E_y} = 2 \times {10^{ - 7}}\sin \left[ {{\pi \over 4} \times {{10}^4}(x - 4 \times {{10}^8}t)} \right]\widehat j\,\,V{m^{ - 1}}$$
$${B_z} = 60\sin \left[ {{\pi \over 4} \times {{10}^4}(x - 4 \times {{10}^8}t)} \right]\widehat k\,\,T$$
Explanation
In first 3 options speed of light is 3 $$\times$$ 108 m/sec and in the fourth option it is 4 $$\times$$ 108 m/sec.
Using
E = CB
We can check the option is B.
Comments (0)
