JEE MAIN - Physics (2022 - 25th July Evening Shift - No. 2)

A drop of liquid of density $$\rho$$ is floating half immersed in a liquid of density $${\sigma}$$ and surface tension $$7.5 \times 10^{-4}$$ Ncm$$-$$1. The radius of drop in $$\mathrm{cm}$$ will be :

(g = 10 ms$$-$$2)

$$ \frac{15}{\sqrt{(2 \rho-\sigma)}} $$
$$\frac{15}{\sqrt{(\rho-\sigma)}}$$
$$\frac{3}{2 \sqrt{(\rho-\sigma)}}$$
$$\frac{3}{20 \sqrt{(2 \rho-\sigma)}}$$

Explanation

JEE Main 2022 (Online) 25th July Evening Shift Physics - Properties of Matter Question 128 English Explanation
At equilibrium, forces balance each other

$$ \mathrm{S}(2 \pi \mathrm{r})+\mathrm{F}_{\mathrm{b}}=m g $$

Where $S=$ surface tension

$$ \begin{aligned} & \mathrm{F}_{\mathrm{b}}=\text { buoyant force }=\frac{2}{3} \pi r^3 \sigma g \\\\ & S(2 \pi r)=m g-\mathrm{F}_b=\frac{4}{3} \pi r^3\left(p-\frac{\sigma}{2}\right) g \\\\ & \Rightarrow r^2=\frac{3 S}{(2 p-\sigma) g} \\\\ & \Rightarrow r^2 =\frac{3 \times 7.5 \times 10^{-2}}{(2 p-\sigma) 10} \\\\ & \Rightarrow r^2 =\frac{22.5 \times 10^{-2}}{(2 p-\sigma) 10} \end{aligned} $$

$$ \Rightarrow $$ $$ r=\frac{1.5 \times 10^{-1}}{\sqrt{2 p-\sigma}} \mathrm{m}$$

$$=\frac{15}{\sqrt{2 p-\sigma}} \mathrm{cm} $$

Comments (0)

Advertisement