JEE MAIN - Physics (2022 - 24th June Morning Shift - No. 5)

A projectile is projected with velocity of 25 m/s at an angle $$\theta$$ with the horizontal. After t seconds its inclination with horizontal becomes zero. If R represents horizontal range of the projectile, the value of $$\theta$$ will be :

[use g = 10 m/s2]

$${1 \over 2}{\sin ^{ - 1}}\left( {{{5{t^2}} \over {4R}}} \right)$$
$${1 \over 2}{\sin ^{ - 1}}\left( {{{4R} \over {5{t^2}}}} \right)$$
$${\tan ^{ - 1}}\left( {{{4{t^2}} \over {5R}}} \right)$$
$${\cot ^{ - 1}}\left( {{R \over {20{t^2}}}} \right)$$

Explanation

JEE Main 2022 (Online) 24th June Morning Shift Physics - Motion in a Plane Question 37 English Explanation

$$t = {{25\sin \theta } \over g}$$

and, $$R = {{{{(25)}^2}(2\sin \theta \cos \theta )} \over g}$$

$$ \Rightarrow R = {{25 \times 25 \times 2} \over g} \times {{gt} \over {25}} \times \cos \theta $$

$$ \Rightarrow R = 50t\cos \theta $$

$$\therefore$$ $$tan\theta = {{gt} \over {25}} \times {{50t} \over R}$$

$$ = {{20{t^2}} \over R}$$

$$ \Rightarrow \theta = {\cot ^{ - 1}}\left( {{R \over {20{t^2}}}} \right)$$

Comments (0)

Advertisement