JEE MAIN - Physics (2021 - 31st August Morning Shift - No. 27)
Explanation
Given,
Angle of inclination, $$\theta$$ = 30$$^\circ$$
Acceleration, a = 10 ms$$-$$2
Acceleration due to gravity, g = 10 ms$$-$$2
According to the question the car and bob is as shown below,
Here, F' is the pseudo force acting on the bob when we considered it from car's frame and T is the tension on the string.
In equilibrium, $$\Sigma$$Fx = 0 and $$\Sigma$$Fy = 0
$$\Rightarrow$$ F' cos30$$^\circ$$ = T sin$$\alpha$$
$${{ma\cos 30^\circ } \over {\sin \alpha }} = T$$ ...... (i)
where, m is the mass of the bob.
$$F'\sin 30^\circ + mg = T\cos \alpha $$
$$ \Rightarrow ma\sin 30^\circ + mg = {{ma\cos 30^\circ } \over {\sin \alpha }}(\cos \alpha )$$ [$$\because$$ using Eq. (i)]
$$ \Rightarrow a\sin 30^\circ + g = {{a\cos 30^\circ } \over {\sin \alpha }}(\cos \alpha )$$
$$10 \times {1 \over 2} + 10 = {{10 \times \sqrt 3 } \over 2}\cot \alpha $$
$$ \Rightarrow {1 \over 2} + 1 = {{\sqrt 3 } \over 2}\cot \alpha \Rightarrow {3 \over 2} = {{\sqrt 3 } \over 2}\cot \alpha $$
or, $$\cot \alpha = \sqrt 3 $$
$$ \Rightarrow \alpha = 30^\circ $$
Comments (0)
