JEE MAIN - Physics (2021 - 31st August Evening Shift - No. 4)

Statement I :

Two forces $$\left( {\overrightarrow P + \overrightarrow Q } \right)$$ and $$\left( {\overrightarrow P - \overrightarrow Q } \right)$$ where $$\overrightarrow P \bot \overrightarrow Q $$, when act at an angle $$\theta$$1 to each other, the magnitude of their resultant is $$\sqrt {3({P^2} + {Q^2})} $$, when they act at an angle $$\theta$$2, the magnitude of their resultant becomes $$\sqrt {2({P^2} + {Q^2})} $$. This is possible only when $${\theta _1} < {\theta _2}$$.

Statement II :

In the situation given above.

$$\theta$$1 = 60$$^\circ$$ and $$\theta$$2 = 90$$^\circ$$

In the light of the above statements, choose the most appropriate answer from the options given below :-
Statement I is false but Statement II is true
Both Statement I and Statement II are true
Statement I is true but Statement II is false
Both Statement I and Statement II are false.

Explanation

$$\overrightarrow A = \overrightarrow P + \overrightarrow Q $$

$$\overrightarrow B = \overrightarrow P - \overrightarrow Q $$

$$\overrightarrow P \bot \overrightarrow Q $$

$$\left| {\overrightarrow A } \right| = \left| {\overrightarrow B } \right| = \sqrt {2({P^2} + {Q^2})(1 + \cos \theta )} $$

For $$\left| {\overrightarrow A + \overrightarrow B } \right| = \sqrt {3({P^2} + {Q^2})} $$

$${\theta _1} = 60^\circ $$

For $$\left| {\overrightarrow A + \overrightarrow B } \right| = \sqrt {2({P^2} + {Q^2})} $$

$${\theta _2} = 90^\circ $$

Comments (0)

Advertisement