JEE MAIN - Physics (2021 - 27th July Evening Shift - No. 26)
The K$$\alpha$$ X-ray of molybdenum has wavelength 0.071 nm. If the energy of a molybdenum atoms with a K electron knocked out is 27.5 keV, the energy of this atom when an L electron is knocked out will be __________ keV. (Round off to the nearest integer)
[h = 4.14 $$\times$$ 10$$-$$15 eVs, c = 3 $$\times$$ 108 ms$$-$$1]
[h = 4.14 $$\times$$ 10$$-$$15 eVs, c = 3 $$\times$$ 108 ms$$-$$1]
Answer
10
Explanation
$${E_{{k_\alpha }}} = {E_k} - {E_L}$$
$${{hc} \over {{\lambda _{{k_\alpha }}}}} = {E_k} - {E_L}$$
$${E_L} = {E_k} - {{hc} \over {{\lambda _{{k_\alpha }}}}}$$
= 27.5 KeV $$ - {{12.42 \times {{10}^{ - 7}}eVm} \over {0.071 \times {{10}^{ - 9}}m}}$$
EL = (27.5 $$-$$ 17.5) keV
= 10 keV
$${{hc} \over {{\lambda _{{k_\alpha }}}}} = {E_k} - {E_L}$$
$${E_L} = {E_k} - {{hc} \over {{\lambda _{{k_\alpha }}}}}$$
= 27.5 KeV $$ - {{12.42 \times {{10}^{ - 7}}eVm} \over {0.071 \times {{10}^{ - 9}}m}}$$
EL = (27.5 $$-$$ 17.5) keV
= 10 keV
Comments (0)
