JEE MAIN - Physics (2021 - 26th February Evening Shift - No. 9)

The incident ray, reflected ray and the outward drawn normal are denoted by the unit vectors $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ respectively. Then choose the correct relation for these vectors.
$$\overrightarrow b $$ = $$\overrightarrow a $$ + 2$$\overrightarrow c $$
$$\overrightarrow b $$ = $$\overrightarrow a $$ $$-$$ 2 ($$\overrightarrow a $$ . $$\overrightarrow c $$)$$\overrightarrow c $$
$$\overrightarrow b $$ = 2$$\overrightarrow a $$ + $$\overrightarrow c $$
$$\overrightarrow b $$ = $$\overrightarrow a $$ $$-$$ $$\overrightarrow c $$

Explanation



Here $$\overrightarrow a = \left| {\overrightarrow a } \right|\sin \theta \widehat i - \left| {\overrightarrow a } \right|\cos \theta \widehat j$$

As $$\overrightarrow a $$ is an unit vector, so $$\left| {\overrightarrow a } \right|$$ = 1

$$ \therefore $$ $$\overrightarrow a = \left| {\overrightarrow a } \right|\sin \theta \widehat i - \left| {\overrightarrow a } \right|\cos \theta \widehat j$$

= $$ \sin \theta \widehat i - \cos \theta \widehat j$$

Similarly $$\overrightarrow b = \sin \theta \widehat i + \cos \theta \widehat j$$

and $$\overrightarrow c = \widehat j$$

From option (B),

$$\overrightarrow a $$ $$-$$ 2 ($$\overrightarrow a $$ . $$\overrightarrow c $$)$$\overrightarrow c $$

= $$\sin \theta \widehat i + \cos \theta \widehat j$$ = $$\overrightarrow b $$

Comments (0)

Advertisement