JEE MAIN - Physics (2021 - 26th February Evening Shift - No. 24)

The volume V of a given mass of monoatomic gas changes with temperature T according to the relation $$V = K{T^{{2 \over 3}}}$$. The workdone when temperature changes by 90K will be xR. The value of x is _________. [R = universal gas constant]
Answer
60

Explanation

We know that work done is

$$W = \int {PdV} $$ .... (1)

$$ \Rightarrow P = {{nRT} \over V}$$ .... (2)

$$ \Rightarrow W = \int {{{nRT} \over V}dv} $$ .... (3)

and given $$V = K{T^{2/3}}$$ .... (4)

$$ \Rightarrow W = \int {{{nRT} \over {K{T^{2/3}}}}.dv} $$ .... (5)

$$ \Rightarrow $$ from (4) : $$dv = {2 \over 3}K{T^{ - 1/3}}dT$$

$$ \Rightarrow W = \int\limits_{{T_1}}^{{T_2}} {{{nRT} \over {K{T^{2/3}}}}{2 \over 3}K{1 \over {{T^{1/3}}}}} dT$$

$$ \Rightarrow W = {2 \over 3}nR \times \left( {{T_2} - {T_1}} \right)$$ .... (6)

$$ \Rightarrow {T_2} - {T_1} = 90K$$ .... (7)

$$ \Rightarrow W = {2 \over 3}nR \times 90$$

$$ \Rightarrow W = 60nR$$

Assuming 1 mole of gas

n = 1

So, W = 60R

Comments (0)

Advertisement