JEE MAIN - Physics (2021 - 25th July Morning Shift - No. 12)
In the Young's double slit experiment, the distance between the slits varies in time as
d(t) = d0 + a0 sin$$\omega$$t; where d0, $$\omega$$ and a0 are constants. The difference between the largest fringe width and the smallest fringe width obtained over time is given as :
d(t) = d0 + a0 sin$$\omega$$t; where d0, $$\omega$$ and a0 are constants. The difference between the largest fringe width and the smallest fringe width obtained over time is given as :
$${{2\lambda D({d_0})} \over {(d_0^2 - a_0^2)}}$$
$${{2\lambda D{a_0}} \over {(d_0^2 - a_0^2)}}$$
$${{\lambda D} \over {d_0^2}}{a_0}$$
$${{\lambda D} \over {{d_0} + {a_0}}}$$
Explanation
Fringe Width, $$\beta = {{\lambda D} \over d}$$
$${\beta _{\max }} \Rightarrow {d_{\min }}$$ and $${\beta _{\min }} \Rightarrow {d_{\max }}$$
$$d = {d_0} + {a_0}\sin \omega t$$
$${d_{\max }} = {d_0} + {a_0}$$ and $${d_{\min }} = {d_0} - {a_0}$$
$$\therefore$$ $${\beta _{\min }} = {{\lambda D} \over {{d_0} + {a_0}}}$$ and
$$\therefore$$ $${\beta _{\max }} = {{\lambda D} \over {{d_0} - {a_0}}}$$
$${\beta _{\max }} - {\beta _{\min }} = {{\lambda D} \over {{d_0} - {a_0}}} - {{\lambda D} \over {{d_0} + {a_0}}} = {{2\lambda D{a_0}} \over {d_0^2 - a_0^2}}$$
$${\beta _{\max }} \Rightarrow {d_{\min }}$$ and $${\beta _{\min }} \Rightarrow {d_{\max }}$$
$$d = {d_0} + {a_0}\sin \omega t$$
$${d_{\max }} = {d_0} + {a_0}$$ and $${d_{\min }} = {d_0} - {a_0}$$
$$\therefore$$ $${\beta _{\min }} = {{\lambda D} \over {{d_0} + {a_0}}}$$ and
$$\therefore$$ $${\beta _{\max }} = {{\lambda D} \over {{d_0} - {a_0}}}$$
$${\beta _{\max }} - {\beta _{\min }} = {{\lambda D} \over {{d_0} - {a_0}}} - {{\lambda D} \over {{d_0} + {a_0}}} = {{2\lambda D{a_0}} \over {d_0^2 - a_0^2}}$$
Comments (0)
