JEE MAIN - Physics (2021 - 25th February Morning Shift - No. 19)

A small bob tied at one end of a thin string of length 1 m is describing a vertical circle so that the maximum and minimum tension in the string are in the ratio 5 : 1. The velocity of the bob at the highest position is ________ m/s. (Take g = 10 m/s2)
Answer
5

Explanation



Let the speed of bob at lowest position be v1 and at the highest position be v2.

Maximum tension is at lowest position and minimum tension is at the highest position. Now, using, conservation of mechanical energy,

$${1 \over 2}mv_1^2 = {1 \over 2}mv_2^2 + mg2l$$

$$ \Rightarrow {v_1}^2 = {v_2}^2 + 4gl$$ ..........(1)

Now, $${T_{\max }} - mg = {{mv_1^2} \over l}$$

$$ \Rightarrow {T_{\max }} = mg + {{mv_1^2} \over l}$$

& $${T_{\min }} + mg = {{mv_2^2} \over l}$$

$$ \Rightarrow {T_{\min }} = {{mv_2^2} \over l} - mg$$

$${{{T_{\max }}} \over {{T_{\min }}}} = {5 \over 1}$$

$$ \Rightarrow {{mg + {{mv_1^2} \over l}} \over {{{mv_2^2} \over l} - mg}} = {5 \over 1}$$

$$ \Rightarrow mg + {{mv_1^2} \over l} = \left[ {{{mv_2^2} \over l} - mg} \right]5$$

$$ \Rightarrow mg + {m \over l}\left[ {v_2^2 + 4gl} \right] = {{5mv_2^2} \over l} - 5mg$$

$$ \Rightarrow mg + {{mv_2^2} \over l} + 4mg = {{5mv_2^2} \over l} - 5mg$$

$$ \Rightarrow 10mg = {{4mv_2^2} \over l}$$

$${v_2}^2 = {{10 \times 10 \times 1} \over 4}$$

$$ \Rightarrow {v_2}^2 = 25 \Rightarrow {v_2} = 5$$ m/s

Thus, velocity of bob at highest position 5 m/s.

Comments (0)

Advertisement