JEE MAIN - Physics (2021 - 24th February Morning Shift - No. 15)

The work done by a gas molecule in an isolated system is

given by, $$W = \alpha {\beta ^2}{e^{ - {{{x^2}} \over {\alpha kT}}}}$$, where x is the displacement, k is the Boltzmann constant and T is the temperature. $$\alpha$$ and $$\beta$$ are constants. Then the dimensions of $$\beta$$ will be :
$$[{M^0}L{T^0}]$$
$$[M{L^2}{T^{ - 2}}]$$
$$[ML{T^{ - 2}}]$$
$$[{M^2}L{T^2}]$$

Explanation

where, k is Boltzmann constant,

T is temperature and x is displacement.

We know that, $${{{x^2}} \over {\alpha kT}}$$ is a dimensionless quantity.

$$\therefore$$ $$\left[ {{{{x^2}} \over {\alpha kT}}} \right] = [{M^0}{L^0}{T^0}] \Rightarrow [\alpha ] = {{[{x^2}]} \over {[k][T]}}$$

$$ \Rightarrow [\alpha ] = {{[{L^2}]} \over {[k][T]}}$$ ..... (i)

Since, dimensions of k are

$$[k] = [{M^1}{L^2}{T^{ - 2}}{K^{ - 1}}]$$ ...... (ii)

Dimensions of temperature are

$$[T] = [K]$$ ..... (iii)

Substituting Eqs. (ii) and (iii) in Eq. (i), we get

$$[\alpha ] = {{[{L^2}]} \over {[{M^1}{L^2}{T^{ - 2}}{K^{ - 1}}][K]}}$$

$$[\alpha ] = [{M^{ - 1}}{T^2}]$$

According to dimensional analysis,

$$[W] = [\alpha {\beta ^2}]$$

$$ \Rightarrow [{\beta ^2}] = {{[W]} \over {[\alpha ]}}$$

$$ \Rightarrow [{\beta ^2}] = {{{M^1}{L^2}{T^{ - 2}}]} \over {[{M^{ - 1}}{T^2}]}} = [{M^2}{L^2}{T^{ - 4}}]$$

$$ \Rightarrow [\beta ] = [ML{T^{ - 2}}]$$

Comments (0)

Advertisement