JEE MAIN - Physics (2021 - 20th July Morning Shift - No. 16)
AC voltage V(t) = 20 sin$$\omega$$t of frequency 50 Hz is applied to a parallel plate capacitor. The separation between the plates is 2 mm and the area is 1 m2. The amplitude of the oscillating displacement current for the applied AC voltage is _________. [Take $$\varepsilon $$0 = 8.85 $$\times$$ 10$$-$$12 F/m]
55.58 $$\mu$$A
21.14 $$\mu$$A
27.79 $$\mu$$A
83.37 $$\mu$$A
Explanation
Given,
AC voltage, V(t) = 20 sin $$\omega$$t volt.
Frequency, f = 50Hz
Separation between the plates, d = 2 mm = 2 $$\times$$ 10$$-$$3 m
Area, A = 1 m2
As, $$C = {{{\varepsilon _0}A} \over d}$$
where, $${{\varepsilon _0}}$$ = absolute electrical permittivity of free space = 8.854 $$\times$$ 10$$-$$12 N$$-$$1 kg2m$$-$$2
$$C = {{{\varepsilon _0} \times 1} \over {2 \times {{10}^{ - 3}}}}$$ .... (i)
Capacitive reactance $$({X_C}) = {1 \over {\omega C}}$$ .... (ii)
From Eqs. (i) and (ii), we get
$${X_C} = {{2 \times {{10}^{ - 3}}} \over {2 \times 50\pi \times {\varepsilon _0}}}$$ ($$\because$$ $$\omega$$ = 2$$\pi$$f)
$$ = {{2 \times {{10}^{ - 3}}} \over {25 \times 4\pi {\varepsilon _0}}}$$
$$ \Rightarrow {X_C} = {{2 \times {{10}^{ - 3}}} \over {25}} \times 9 \times {10^9}$$
$$ \Rightarrow {X_C} = {{18} \over {25}} \times {10^6}\,\Omega $$
By using Ohm's law,
As, $${I_0} = {{{V_0}} \over {{X_C}}} = {{20 \times 25} \over {18}} \times {10^{ - 6}} = 27.78 \times {10^{ - 6}}$$
$$\Rightarrow$$ I0 = 27.78$$\mu$$A
$$\therefore$$ The amplitude of the oscillating displacement current for applied AC voltage will be approximately 27.79 $$\mu$$A.
AC voltage, V(t) = 20 sin $$\omega$$t volt.
Frequency, f = 50Hz
Separation between the plates, d = 2 mm = 2 $$\times$$ 10$$-$$3 m
Area, A = 1 m2
As, $$C = {{{\varepsilon _0}A} \over d}$$
where, $${{\varepsilon _0}}$$ = absolute electrical permittivity of free space = 8.854 $$\times$$ 10$$-$$12 N$$-$$1 kg2m$$-$$2
$$C = {{{\varepsilon _0} \times 1} \over {2 \times {{10}^{ - 3}}}}$$ .... (i)
Capacitive reactance $$({X_C}) = {1 \over {\omega C}}$$ .... (ii)
From Eqs. (i) and (ii), we get
$${X_C} = {{2 \times {{10}^{ - 3}}} \over {2 \times 50\pi \times {\varepsilon _0}}}$$ ($$\because$$ $$\omega$$ = 2$$\pi$$f)
$$ = {{2 \times {{10}^{ - 3}}} \over {25 \times 4\pi {\varepsilon _0}}}$$
$$ \Rightarrow {X_C} = {{2 \times {{10}^{ - 3}}} \over {25}} \times 9 \times {10^9}$$
$$ \Rightarrow {X_C} = {{18} \over {25}} \times {10^6}\,\Omega $$
By using Ohm's law,
As, $${I_0} = {{{V_0}} \over {{X_C}}} = {{20 \times 25} \over {18}} \times {10^{ - 6}} = 27.78 \times {10^{ - 6}}$$
$$\Rightarrow$$ I0 = 27.78$$\mu$$A
$$\therefore$$ The amplitude of the oscillating displacement current for applied AC voltage will be approximately 27.79 $$\mu$$A.
Comments (0)
