JEE MAIN - Physics (2021 - 1st September Evening Shift - No. 19)

There are two infinitely long straight current carrying conductors and they are held at right angles to each other so that their common ends meet at the origin as shown in the figure given below. The ratio of current in both conductor is 1 : 1. The magnetic field at point P is ____________.

JEE Main 2021 (Online) 1st September Evening Shift Physics - Magnetic Effect of Current Question 104 English
$${{{\mu _0}I} \over {4\pi xy}}\left[ {\sqrt {{x^2} + {y^2}} + (x + y)} \right]$$
$${{{\mu _0}I} \over {4\pi xy}}\left[ {\sqrt {{x^2} + {y^2}} - (x + y)} \right]$$
$${{{\mu _0}Ixy} \over {4\pi }}\left[ {\sqrt {{x^2} + {y^2}} - (x + y)} \right]$$
$${{{\mu _0}Ixy} \over {4\pi }}\left[ {\sqrt {{x^2} + {y^2}} + (x + y)} \right]$$

Explanation

JEE Main 2021 (Online) 1st September Evening Shift Physics - Magnetic Effect of Current Question 104 English Explanation
Bdue to wire (1) = $${{{\mu _0}I} \over {4\pi y}}\left[ {\sin 90 + \sin {\theta _1}} \right]$$

$$ = {{{\mu _0}} \over {4\pi }}{I \over y}\left( {1 + {x \over {\sqrt {{x^2} + {y^2}} }}} \right)$$ ....(1)

Bdue to wire (2) = $${{{\mu _0}} \over {4\pi }}{1 \over x}(\sin 90^\circ + \sin {\theta _2})$$

$$ = {{{\mu _0}} \over {4\pi }}{1 \over x}\left( {1 + {y \over {\sqrt {{x^2} + {y^2}} }}} \right)$$ ....(2)

Total magnetic field

$$B = {B_1} + {B_2}$$

$$B = {{{\mu _0}I} \over {4\pi }}\left[ {{1 \over y} + {x \over {y\sqrt {{x^2} + {y^2}} }} + {1 \over x} + {y \over {x\sqrt {{x^2} + {y^2}} }}} \right]$$

$$B = {{{\mu _0}I} \over {4\pi }}\left[ {{{x + y} \over {xy}} + {{{x^2} + {y^2}} \over {xy\sqrt {{x^2} + {y^2}} }}} \right]$$

$$B = {{{\mu _0}I} \over {4\pi }}\left[ {{{x + y} \over {xy}} + {{\sqrt {{x^2} + {y^2}} } \over {xy}}} \right]$$

$$B = {{{\mu _0}I} \over {4\pi xy}}\left[ {\sqrt {{x^2} + {y^2}} + (x + y)} \right]$$

Option (1)

Comments (0)

Advertisement