JEE MAIN - Physics (2021 - 18th March Evening Shift - No. 13)

The function of time representing a simple harmonic motion with a period of $${\pi \over \omega }$$ is :
cos($$\omega$$t) + cos(2$$\omega$$t) + cos(3$$\omega$$t)
sin2($$\omega$$t)
sin($$\omega$$t) + cos($$\omega$$t)
3cos$$\left( {{\pi \over 4} - 2\omega t} \right)$$

Explanation

General equation of SHM

x = A sin($$\omega$$'t $$\pm$$ $$\phi$$)

We know, $$\omega$$ = $${{2\pi } \over T}$$

Given, $$T = {\pi \over \omega }$$

$$ \therefore $$ $$\omega$$' = $${{2\pi } \over {{\pi \over \omega }}}$$ = 2$$\omega$$

$$ \therefore $$ Equation becomes,

x = a sin(2$$\omega$$t $$\pm$$ $$\phi$$)

Here coefficient of t is 2$$\omega$$.

you can see only option (D) has coefficient 2$$\omega$$.

Comments (0)

Advertisement