JEE MAIN - Physics (2020 - 9th January Morning Slot - No. 7)
_9th_January_Morning_Slot_en_7_1.png)
$${{13} \over {23}}$$
$${{23} \over {13}}$$
$${{15} \over {13}}$$
$${{13} \over {15}}$$
Explanation
AB = d
$$ \therefore $$ OA = $${{d \over {\sqrt 3 }}}$$
From parallel axis theorem
I0 = $$3 \times \left[ {{2 \over 5}M{{\left( {{d \over 2}} \right)}^2} + M{{\left( {{d \over {\sqrt 3 }}} \right)}^2}} \right]$$ = $${{13} \over {10}}M{d^2}$$
IA = I0 + 3M$${{{\left( {{d \over {\sqrt 3 }}} \right)}^2}}$$
= $${{13} \over {10}}M{d^2}$$ + Md2
= $${{23} \over {10}}M{d^2}$$
$$ \therefore $$ $${{{I_0}} \over {{I_A}}}$$ = $${{13} \over {23}}$$
$$ \therefore $$ OA = $${{d \over {\sqrt 3 }}}$$
From parallel axis theorem
I0 = $$3 \times \left[ {{2 \over 5}M{{\left( {{d \over 2}} \right)}^2} + M{{\left( {{d \over {\sqrt 3 }}} \right)}^2}} \right]$$ = $${{13} \over {10}}M{d^2}$$
IA = I0 + 3M$${{{\left( {{d \over {\sqrt 3 }}} \right)}^2}}$$
= $${{13} \over {10}}M{d^2}$$ + Md2
= $${{23} \over {10}}M{d^2}$$
$$ \therefore $$ $${{{I_0}} \over {{I_A}}}$$ = $${{13} \over {23}}$$
Comments (0)
