JEE MAIN - Physics (2020 - 9th January Evening Slot - No. 6)

An electron of mass m and magnitude of charge |e| initially at rest gets accelerated by a constant electric field E. The rate of change of de-Broglie wavelength of this electron at time t ignoring relativistic effects is :
$${{ - h} \over {\left| e \right|Et}}$$
$${{ - h} \over {\left| e \right|E\sqrt t }}$$
$${{ - h} \over {\left| e \right|E{t^2}}}$$
$${{\left| e \right|Et} \over h}$$

Explanation

F = |e| E

$$a = {F \over m}$$ = $${{\left| e \right|E} \over m}$$

V = $$at = $$ $${{\left| e \right|E} \over m}t$$

$$\lambda $$ = $${h \over {mV}}$$ = $${h \over {\left| e \right|Et}}$$

$${{d\lambda } \over {dt}}$$ = $${{ - h} \over {\left| e \right|E{t^2}}}$$

Comments (0)

Advertisement