JEE MAIN - Physics (2020 - 9th January Evening Slot - No. 22)

A plane electromagnetic wave is propagating along the direction $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$ , with its polarization along the direction $$\widehat k$$ . The correct form of the magnetic field of the wave would be (here B0 is an appropriate constant) :
$${B_0}{{\widehat i - \widehat j} \over {\sqrt 2 }}\cos \left( {\omega t - k{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)$$
$${B_0}{{\widehat i + \widehat j} \over {\sqrt 2 }}\cos \left( {\omega t - k{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)$$
$${B_0}{{\widehat j - \widehat i} \over {\sqrt 2 }}\cos \left( {\omega t + k{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)$$
$${B_0}\widehat k\cos \left( {\omega t - k{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)$$

Explanation

Direction of propagation = $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$

Electric field is in direction = $$\widehat k$$

As $$\overrightarrow E \times \overrightarrow B $$ = $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$

Propagation direction of $$\overrightarrow B = {{\widehat i - \widehat j} \over {\sqrt 2 }}$$

Comments (0)

Advertisement