JEE MAIN - Physics (2020 - 7th January Morning Slot - No. 9)
_7th_January_Morning_Slot_en_9_1.png)
$$r\sqrt {{3 \over {2gh}}} $$
$$r\sqrt {{3 \over {4gh}}} $$
$${1 \over r}\sqrt {{{4gh} \over 3}} $$
$${1 \over r}\sqrt {{{2gh} \over 3}} $$
Explanation
mgh = $$\Delta $$KE
= $${1 \over 2}m{v^2} + {1 \over 2}I{\omega ^2}$$
For no slipping, v = $$\omega $$R
$$ \therefore $$ mgh = $${1 \over 2}m{\omega ^2}{R^2} + {1 \over 2}{{m{R^2}} \over 2}{\omega ^2}$$
$$ \Rightarrow $$ mgh = $${3 \over 4}m{\omega ^2}{R^2}$$
$$ \Rightarrow $$ $$\omega $$ = $${1 \over r}\sqrt {{{4gh} \over 3}} $$
= $${1 \over 2}m{v^2} + {1 \over 2}I{\omega ^2}$$
For no slipping, v = $$\omega $$R
$$ \therefore $$ mgh = $${1 \over 2}m{\omega ^2}{R^2} + {1 \over 2}{{m{R^2}} \over 2}{\omega ^2}$$
$$ \Rightarrow $$ mgh = $${3 \over 4}m{\omega ^2}{R^2}$$
$$ \Rightarrow $$ $$\omega $$ = $${1 \over r}\sqrt {{{4gh} \over 3}} $$
Comments (0)
