JEE MAIN - Physics (2020 - 7th January Evening Slot - No. 8)

The electric field of a plane electromagnetic wave is given by
$$\overrightarrow E = {E_0}{{\widehat i + \widehat j} \over {\sqrt 2 }}\cos \left( {kz + \omega t} \right)$$

At t = 0, a positively charged particle is at the point (x, y, z) = $$\left( {0,0,{\pi \over k}} \right)$$.
If its instantaneous velocity at (t = 0) is $${v_0}\widehat k$$ , the force acting on it due to the wave is :
parallel to $$\widehat k$$
parallel to $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$
antiparallel to $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$
zero

Explanation

$$\overrightarrow E = {E_0}{{\widehat i + \widehat j} \over {\sqrt 2 }}\cos \left( {kz + \omega t} \right)$$

$$\overrightarrow E $$ at t = 0 at z = $${\pi \over k}$$ is given by

$$\overrightarrow E = $$$${E_0}\left( {{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)\cos \left( {k{\pi \over k} + \omega \left( 0 \right)} \right)$$

= $$ - {E_0}\left( {{{\widehat i + \widehat j} \over {\sqrt 2 }}} \right)$$

As $$\overrightarrow E \times \overrightarrow B = \overrightarrow c $$

Force due to magnetic field is in direction $$q\left( {\overrightarrow v \times \overrightarrow B } \right)$$ and given $${\overrightarrow v }$$ parallel to $$\widehat k$$.

$$\overrightarrow F = $$ $$q\left( {\overrightarrow E + \overrightarrow v \times \overrightarrow B } \right)$$

$$ \therefore $$ $$\overrightarrow F $$ is in direction of $${\overrightarrow E }$$

which is antiparallel to $${{\widehat i + \widehat j} \over {\sqrt 2 }}$$

Comments (0)

Advertisement