JEE MAIN - Physics (2020 - 7th January Evening Slot - No. 7)

Under an adiabatic process, the volume of an ideal gas gets doubled. Consequently the mean collision time between the gas molecule changes from $${\tau _1}$$ to $${\tau _2}$$ . If $${{{C_p}} \over {{C_v}}} = \gamma $$ for this gas then a good estimate for $${{{\tau _2}} \over {{\tau _1}}}$$ is given by :
$${\left( 2 \right)^{{{1 + \gamma } \over 2}}}$$
2
$${\left( {{1 \over 2}} \right)^{{{1 + \gamma } \over 2}}}$$
$${\left( {{1 \over 2}} \right)^\gamma }$$

Explanation

$$\tau $$ $$ \propto $$ $${V \over {\sqrt T }}$$ ....(1)

Also we know, PV$$\gamma $$ = k

We know, PV = nRT

$$ \Rightarrow $$ P $$ \propto $$ $${T \over V}$$

$$ \therefore $$ $$\left( {{T \over V}} \right)$$V$$\gamma $$ = k

$$ \Rightarrow $$TV$$\gamma $$ - 1 = k

$$ \Rightarrow $$ T $$ \propto $$ V1 - $$\gamma $$

Using this value in equation (1)

$$\tau $$ $$ \propto $$ $${V \over {{V^{{{1 - \gamma } \over 2}}}}}$$

$$ \Rightarrow $$ $$\tau $$ $$ \propto $$ $${{V^{1 - {{1 - \gamma } \over 2}}}}$$

$$ \Rightarrow $$ $$\tau $$ $$ \propto $$ $${{V^{{{\gamma + 1} \over 2}}}}$$

$$ \therefore $$ $${{{\tau _2}} \over {{\tau _1}}}$$ = $${\left( {{{2V} \over V}} \right)^{^{{{\gamma + 1} \over 2}}}}$$ = $${\left( 2 \right)^{{{1 + \gamma } \over 2}}}$$

Comments (0)

Advertisement