JEE MAIN - Physics (2020 - 6th September Morning Slot - No. 22)

The density of a solid metal sphere is determined by measuring its mass and its diameter. The maximum error in the density of the sphere is $$\left( {{x \over {100}}} \right)$$ %. If the relative errors in measuring the mass and the diameter are 6.0% and 1.5% respectively, the value of x is_______.
Answer
1050

Explanation

$$\rho $$ = $${M \over V}$$ = $${M \over {{4 \over 3}\pi {{\left( {{D \over 2}} \right)}^3}}}$$

$$ \Rightarrow $$ $$\rho $$ = $${6 \over \pi }M{D^{ - 3}}$$

For maximum error

$${{d\rho } \over \rho } \times 100 = {{dM} \over M} \times 100 + 3{{dD} \over D} \times 100$$

= 6 + 3 $$ \times $$ 1.5

= 10.5 %

= $$\left( {{{1050} \over {100}}} \right)$$ %

$$ \therefore $$ x = 1050

Comments (0)

Advertisement