JEE MAIN - Physics (2020 - 6th September Evening Slot - No. 3)
The linear mass density of a thin rod AB of length L varies from A to B as
$$\lambda \left( x \right) = {\lambda _0}\left( {1 + {x \over L}} \right)$$, where x is the distance from A. If M is the mass of the rod then its moment of inertia about an axis passing through A and perpendicular to the rod is :
$$\lambda \left( x \right) = {\lambda _0}\left( {1 + {x \over L}} \right)$$, where x is the distance from A. If M is the mass of the rod then its moment of inertia about an axis passing through A and perpendicular to the rod is :
$${2 \over 5}M{L^2}$$
$${5 \over {12}}M{L^2}$$
$${7 \over {18}}M{L^2}$$
$${3 \over 7}M{L^2}$$
Explanation
_6th_September_Evening_Slot_en_3_1.png)
dm = $$\lambda $$dx
= $${\lambda _0}\left( {1 + {x \over L}} \right)$$dx
Integrating both side, we get
$$\int\limits_0^M {dm} = \int\limits_0^L {{\lambda _0}\left( {1 + {x \over L}} \right)} dx$$
$$ \Rightarrow $$ M = $${\lambda _0}L + {{{\lambda _0}{L^2}} \over {2L}}$$ = $${{3{\lambda _0}L} \over 2}$$
$$ \Rightarrow $$ $${\lambda _0} = {{2M} \over {3L}}$$ .....(1)
Moment of inertia of small part dx is
dI = dmx2
Integrating both side, we get
$$\int\limits_0^I {dI} = \int\limits_0^L {dm{x^2}} $$
$$ \Rightarrow $$ I = $$\int\limits_0^L {{\lambda _0}\left( {1 + {x \over L}} \right)} dx\,{x^2}$$
= $${\lambda _0}\int\limits_0^L {\left( {{x^2} + {{{x^3}} \over L}} \right)} dx$$
= $${\lambda _0}\left[ {{{{L^3}} \over 3} + {{{L^3}} \over 4}} \right]$$
= $${{7{L^3}{\lambda _0}} \over {12}}$$
Here by putting the value of $$\lambda $$0 form (1)
I = $${{7{L^3}} \over {12}}\left( {{{2M} \over {3L}}} \right)$$ = $${7 \over {18}}M{L^2}$$
Comments (0)
