JEE MAIN - Physics (2020 - 6th September Evening Slot - No. 17)

For a plane electromagnetic wave, the magnetic field at a point x and time t is

$$\overrightarrow B \left( {x,t} \right)$$ = $$\left[ {1.2 \times {{10}^{ - 7}}\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat k} \right]$$ T

The instantaneous electric field $$\overrightarrow E $$ corresponding to $$\overrightarrow B $$ is :
(speed of light c = 3 × 108 ms–1)
$$\overrightarrow E \left( {x,t} \right) = \left[ {36\sin \left( {1 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat i} \right]$$ $${V \over m}$$
$$\overrightarrow E \left( {x,t} \right) = \left[ {36\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat k} \right]{V \over m}$$
$$\overrightarrow E \left( {x,t} \right) = \left[ {36\sin \left( {1 \times {{10}^3}x + 0.5 \times {{10}^{11}}t} \right)\widehat j} \right]{V \over m}$$
$$\overrightarrow E \left( {x,t} \right) = \left[ { - 36\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat j} \right]{V \over m}$$

Explanation

Given,
$$\overrightarrow B \left( {x,t} \right)$$ = $$\left[ {1.2 \times {{10}^{ - 7}}\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat k} \right]$$ T

Wave is travelling along (–x) axis and $$\overrightarrow B $$ is along +z axis.

We know, Magnitude of electric field

E = BC

= 1.2 $$ \times $$ 10-7 sin ( 0.5 10 + 1.5$$ \times $$1011t ) $$ \times $$ 3 $$ \times $$ 108

= 36 sin (0.5$$ \times $$103x+1.5$$ \times $$1011t) V/m

Also, $$\overrightarrow s = {{\overrightarrow E \times \overrightarrow B } \over {{\mu _0}}}$$

$$ \Rightarrow $$ $$ - \widehat i = {{\overrightarrow E \times \widehat k} \over {{\mu _0}}}$$

$$ \therefore $$ Direction of $${\overrightarrow E = - \widehat j}$$

$$ \therefore $$ Instantaneous electric field,

$$\overrightarrow E \left( {x,t} \right) = \left[ { - 36\sin \left( {0.5 \times {{10}^3}x + 1.5 \times {{10}^{11}}t} \right)\widehat j} \right]{V \over m}$$

Comments (0)

Advertisement