JEE MAIN - Physics (2020 - 6th September Evening Slot - No. 13)

A particle moving in the xy plane experiences a velocity dependent force
$$\overrightarrow F = k\left( {{v_y}\widehat i + {v_x}\widehat j} \right)$$ , where vx and vy are the
x and y components of its velocity $$\overrightarrow v $$ . If $$\overrightarrow a $$ is the
acceleration of the particle, then
which of the following statements is true for the particle?
kinetic energy of particle is constant in time
quantity $$\overrightarrow v \times \overrightarrow a $$ is constant in time
quantity $$\overrightarrow v .\overrightarrow a $$ is constant in time
$$\overrightarrow F $$ arises due to a magnetic field

Explanation

Given $$\overrightarrow F = k\left( {{v_y}\widehat i + {v_x}\widehat j} \right)$$

$$ \Rightarrow $$ m$$\overrightarrow a $$ = $$k\left( {{v_y}\widehat i + {v_x}\widehat j} \right)$$

$$ \Rightarrow $$ $$\overrightarrow a = {k \over m}\left( {{v_y}\widehat i + {v_x}\widehat j} \right)$$

Also $${{d{v_x}} \over {dt}} = {k \over m}{v_x}$$

and $${{d{v_y}} \over {dt}} = {k \over m}{v_y}$$

$${{d{v_x}} \over {d{v_y}}} = {{{v_y}} \over {{v_x}}}$$

$$ \Rightarrow $$ $$\int {{v_x}d{v_x}} = \int {{v_y}} d{v_y}$$

$$ \Rightarrow $$ $$v_y^2 = v_x^2 + C$$

$$ \Rightarrow $$ $$v_y^2 - v_x^2 = C$$ = Constant

From Option (B),

$$\overrightarrow v \times \overrightarrow a $$

= $$\left( {{v_x}\widehat i + {v_y}\widehat j} \right) \times {k \over m}\left( {{v_y}\widehat i + {v_x}\widehat j} \right)$$

= $$\left( {v_x^2\widehat k - v_y^2\widehat k} \right) \times {k \over m}$$

= $$\left( {v_x^2 - v_y^2} \right) \times {k \over m}\widehat k$$

= Constant

Comments (0)

Advertisement