JEE MAIN - Physics (2020 - 5th September Evening Slot - No. 6)

A parallel plate capacitor has plate of length 'l', width ‘w’ and separation of plates is ‘d’. It is connected to a battery of emf V. A dielectric slab of the same thickness ‘d’ and of dielectric constant k = 4 is being inserted between the plates of the capacitor. At what length of the slab inside plates, will the energy stored in the capacitor be two times the initial energy stored?
$${l \over 4}$$
$${l \over 2}$$
$${{2l} \over 3}$$
$${l \over 3}$$

Explanation

JEE Main 2020 (Online) 5th September Evening Slot Physics - Capacitor Question 95 English Explanation 1

Ci = $${{{\varepsilon _0}A} \over d} = {{{\varepsilon _0}lw} \over d}$$

Ui = $${1 \over 2}{C_i}{V^2}$$ = $${1 \over 2}{{{\varepsilon _0}lw} \over d}{V^2}$$ JEE Main 2020 (Online) 5th September Evening Slot Physics - Capacitor Question 95 English Explanation 2

Cf = C1 + C2

= $${{K{\varepsilon _0}{A_1}} \over d} + {{{\varepsilon _0}{A_2}} \over d}$$

= $${{K{\varepsilon _0}wx} \over d} + {{{\varepsilon _0}w\left( {l - x} \right)} \over d}$$

= $${{{\varepsilon _0}w} \over d}\left[ {Kx + l - x} \right]$$

$$ \therefore $$ Uf = $${1 \over 2}{C_f}{V^2}$$

= $${1 \over 2}{{{\varepsilon _0}w} \over d}\left[ {Kx + l - x} \right]{V^2}$$

Given Uf = 2Ui

$$ \Rightarrow $$ $${1 \over 2}{{{\varepsilon _0}w} \over d}\left[ {Kx + l - x} \right]{V^2}$$ = 2 $$ \times $$ $${1 \over 2}{{{\varepsilon _0}lw} \over d}{V^2}$$

$$ \Rightarrow $$ kx + l – x = 2l

$$ \Rightarrow $$ 4x – x = l

$$ \Rightarrow $$ 3x = l

$$ \Rightarrow $$ x = $${l \over 3}$$

Comments (0)

Advertisement