JEE MAIN - Physics (2020 - 4th September Morning Slot - No. 8)
Particle A of mass mA = $${m \over 2}$$ moving along the x-axis with velocity v0 collides elastically with another particle B at rest having mass mB = $${m \over 3}$$. If both particles move along the x-axis after the collision, the change $$\Delta $$$$\lambda $$ in de-Broglie wavlength of particle A, in terms of its de-Broglie wavelength ($$\lambda $$0) before collision is :
$$\Delta $$$$\lambda $$ = $${5 \over 2}{\lambda _0}$$
$$\Delta $$$$\lambda $$ = $${3 \over 2}{\lambda _0}$$
$$\Delta $$$$\lambda $$ = 2$$\lambda $$0
$$\Delta $$$$\lambda $$ = 4$$\lambda $$0
Explanation
Applying momentum conservation
$${m \over 2} \times {V_0} + {m \over 3} \times 0 = {m \over 2}{V_A} + {m \over 3}{V_B}$$
$$ \Rightarrow $$ $${{{V_0}} \over 2} = {{{V_A}} \over 2} + {{{V_B}} \over 3}$$ .....(1)
Since, collision is elastic (e = 1)
e = 1 = $${{{V_B} - {V_A}} \over {{V_0}}}$$
$$ \Rightarrow $$ V0 = VB – VA .....(2)
On solving (1) & (2) :
VA = $${{{V_0}} \over 5}$$
Now, De-Broglie wavelength of A before collision :
$$\lambda $$0 = $${h \over {{m_A}{V_0}}}$$
= $${h \over {\left( {{m \over 2}} \right){V_0}}}$$
= $${{2h} \over {m{V_0}}}$$
Final De-Broglie wavelength :
$$\lambda $$f = $${h \over {{m_A}{V_A}}}$$
= $${h \over {\left( {{m \over 2}} \right)\left( {{{{V_0}} \over 5}} \right)}}$$ = $${{10h} \over {m{V_0}}}$$
Now, $$\Delta $$$$\lambda $$ = $$\lambda $$f - $$\lambda $$0
= $${{10h} \over {m{V_0}}}$$ - $${{2h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = $${{8h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = $$4 \times {{2h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = 4$$\lambda $$0
$${m \over 2} \times {V_0} + {m \over 3} \times 0 = {m \over 2}{V_A} + {m \over 3}{V_B}$$
$$ \Rightarrow $$ $${{{V_0}} \over 2} = {{{V_A}} \over 2} + {{{V_B}} \over 3}$$ .....(1)
Since, collision is elastic (e = 1)
e = 1 = $${{{V_B} - {V_A}} \over {{V_0}}}$$
$$ \Rightarrow $$ V0 = VB – VA .....(2)
On solving (1) & (2) :
VA = $${{{V_0}} \over 5}$$
Now, De-Broglie wavelength of A before collision :
$$\lambda $$0 = $${h \over {{m_A}{V_0}}}$$
= $${h \over {\left( {{m \over 2}} \right){V_0}}}$$
= $${{2h} \over {m{V_0}}}$$
Final De-Broglie wavelength :
$$\lambda $$f = $${h \over {{m_A}{V_A}}}$$
= $${h \over {\left( {{m \over 2}} \right)\left( {{{{V_0}} \over 5}} \right)}}$$ = $${{10h} \over {m{V_0}}}$$
Now, $$\Delta $$$$\lambda $$ = $$\lambda $$f - $$\lambda $$0
= $${{10h} \over {m{V_0}}}$$ - $${{2h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = $${{8h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = $$4 \times {{2h} \over {m{V_0}}}$$
$$ \Rightarrow $$ $$\Delta $$$$\lambda $$ = 4$$\lambda $$0
Comments (0)
