JEE MAIN - Physics (2020 - 3rd September Morning Slot - No. 10)

A block of mass m = 1 kg slides with velocity v = 6 m/s on a frictionless horizontal surface and collides with a uniform vertical rod and sticks to it as shown. The rod is pivoted about O and swings as a result of the collision making angle $$\theta $$ before momentarily coming to rest. If the rod has mass M = 2 kg, and length $$l$$ = 1 m, the value of $$\theta $$ is approximately :
(take g = 10 m/s2) JEE Main 2020 (Online) 3rd September Morning Slot Physics - Center of Mass and Collision Question 70 English
63o
69o
55o
49

Explanation



Applying Angular momentum conservation

mv$$l$$ = $$\left( {{{M{l^2}} \over 3} + m{l^2}} \right)$$$$\omega $$

$$ \Rightarrow $$ $$\omega = {{1 \times 6 \times 1} \over {{2 \over 3} + 1}}$$ = $${{18} \over 5}$$

Now, using energy conservation

$${1 \over 2}I{\omega ^2} = \left( {m + M} \right)gh$$

$$ \Rightarrow $$ $${1 \over 2}\left( {{{M{l^2}} \over 3} + m{l^2}} \right){\omega ^2} = \left( {m + M} \right)g{x_{COM}}\left( {1 - \cos \theta } \right)$$

$$ \Rightarrow $$ $${1 \over 2}\left( {{2 \over 3} + 1} \right){\left( {{{18} \over 5}} \right)^2} = \left( {m + M} \right)g \times {{M \times {l \over 2} + ml} \over {\left( {M + m} \right)}}\left( {1 - \cos \theta } \right)$$

$$ \Rightarrow $$ $${1 \over 2} \times {5 \over 3} \times {{18 \times 18} \over {25}} = 10 \times \left( {2 \times {1 \over 2} + 1} \right)\left( {1 - \cos \theta } \right)$$

$$ \Rightarrow $$ $${5 \over 6} \times {{18 \times 18} \over {25}} = 20\left( {1 - \cos \theta } \right)$$

$$ \Rightarrow $$ $$\left( {1 - \cos \theta } \right) = {{18} \over 5} \times {3 \over {20}}$$

$$ \Rightarrow $$ $${\cos \theta = 1 - {{27} \over {50}}}$$

$$ \Rightarrow $$ $${\cos \theta = {{23} \over {50}}}$$

$$ \Rightarrow $$ $$\theta $$ $$ \simeq $$ 63o

Comments (0)

Advertisement