JEE MAIN - Physics (2020 - 3rd September Evening Slot - No. 3)

A block starts moving up an inclined plane of inclination 30o with an initial velocity of v0 . It comes back to its initial position with velocity $${{{v_0}} \over 2}$$. The value of the coefficient of kinetic friction between the block and the inclined plane is close to $${I \over {1000}}$$. The nearest integer to I is____.
Answer
346

Explanation

JEE Main 2020 (Online) 3rd September Evening Slot Physics - Work Power & Energy Question 89 English Explanation
a = g sin 30 + $$\mu $$ g cos 30

We know, v2 = u2 + 2as

$$ \Rightarrow $$ 0 = $$v_0^2$$ - 2ad

$$ \Rightarrow $$ $$v_0^2 = 2ad$$

$$d = {{v_0^2} \over {2a}}$$

Total work done,

$${W_f} = {k_f} - {k_i}$$

$$ \Rightarrow $$ $$ - 2\mu mg\,\cos 30{{v_0^2} \over {2a}} = {1 \over 2}m{{v_0^2} \over 4} - {1 \over 2}mv_0^2$$

$$ \Rightarrow $$ $${{ + \mu g\,\cos 30} \over a} = $$$${3 \over 8}$$

$$ \Rightarrow $$ $$8\mu g\,\cos 30 = 3g\,\sin 30 + 3\mu \,\cos 30$$

$$ \Rightarrow $$ $$5\mu g\,\cos 30 = 3g\,\sin 30$$

$$ \Rightarrow $$ $$\mu = {{3\tan 30} \over 5} = {{\sqrt 3 } \over 5}$$

$$ \Rightarrow $$ $${{\sqrt 3 } \over 5} = {I \over {1000}}$$

$$ \Rightarrow $$ $$I = 346$$

Comments (0)

Advertisement