JEE MAIN - Physics (2020 - 3rd September Evening Slot - No. 10)

Concentric metallic hollow spheres of radii R and 4R hold charges Q1 and Q2 respectively. Given that surface charge densities of the concentric spheres are equal, the potential difference V(R) – V(4R) is :
$${{3{Q_2}} \over {4\pi {\varepsilon _0}R}}$$
$${{3{Q_1}} \over {4\pi {\varepsilon _0}R}}$$
$${{3{Q_1}} \over {16\pi {\varepsilon _0}R}}$$
$${{{Q_2}} \over {4\pi {\varepsilon _0}R}}$$

Explanation

JEE Main 2020 (Online) 3rd September Evening Slot Physics - Electrostatics Question 150 English Explanation
$$\sigma = {{{Q_1}} \over {4\pi {R^2}}} = {{{Q_2}} \over {4\pi 16{R^2}}}$$

$$ \Rightarrow $$ $$16{Q_1} = {Q_2}$$

$$ \therefore $$ $${V_R} - {V_{4R}} = {{K{Q_1}} \over R} + {{K{Q_2}} \over {4R}} - {{K{Q_1}} \over {4R}} - {{K{Q_2}} \over {4R}}$$

$$ = {{3K{Q_1}} \over {4R}} = {{3{Q_1}} \over {16\pi {\varepsilon _0}R}}$$ [As K = $${1 \over {4\pi {\varepsilon _0}}}$$ ]

Comments (0)

Advertisement