JEE MAIN - Physics (2020 - 2nd September Morning Slot - No. 5)
A particle of mass m with an initial velocity $$u\widehat i$$
collides perfectly elastically with a mass 3 m at
rest. It moves with a velocity $$v\widehat j$$ after collision,
then, v is given by :
$$v = \sqrt {{2 \over 3}} u$$
$$v = {u \over {\sqrt 3 }}$$
$$v = {u \over {\sqrt 2 }}$$
$$v = {1 \over {\sqrt 6 }}u$$
Explanation
_2nd_September_Morning_Slot_en_5_2.png)
From momentum conservation
m(u)$$\widehat i$$ + 3m(0) = mv$$\widehat j$$ + 3m$$\overrightarrow {v'} $$
$$ \Rightarrow $$ 3m$$\overrightarrow {v'} $$ = m(u)$$\widehat i$$ - mv$$\widehat j$$
$$ \Rightarrow $$ $$\overrightarrow {v'} = {{u\widehat i - v\widehat j} \over 3}$$
$$ \therefore $$ $$\left| {\overrightarrow {v'} } \right| = {{\sqrt {{u^2} + {v^2}} } \over 3}$$
$$ \Rightarrow $$ $${\left| {\overrightarrow {v'} } \right|^2} = {{{u^2} + {v^2}} \over 9}$$ ......(1)
As collision is perfectely elastic hence
KEi = KEj
$$ \Rightarrow $$ $${1 \over 2}m{u^2} + {1 \over 2}\left( {3m} \right) \times {0^2} = {1 \over 2}m{v^2} + {1 \over 2}3m{\left( {v'} \right)^2}$$
$$ \Rightarrow $$ u2 = v2 + 3$${\left( {v'} \right)^2}$$
$$ \Rightarrow $$ u2 = v2 + 3$$\left( {{{{u^2} + {v^2}} \over 9}} \right)$$
$$ \Rightarrow $$ 3u2 = 3v2 + u2 + v2
$$ \Rightarrow $$ 2u2 = 4v2
$$ \Rightarrow $$ $$v = {u \over {\sqrt 2 }}$$
Comments (0)
